Hypercom was an Australian company which was a pioneer of electronic payment processing hardware and software. It was acquired by rival VeriFone in 2011. Hypercom was founded by Hungarian born George Wallner, David Saul and Leslie Fritz in Sydney Australia in 1978. It went on to dominate the south pacific region in terms of payment. USB™ multi-port adapters with Ethernet connectivity and some Ethernet adapters are not compatible at this time (due to IC design). Click here for more information. The display driver does not support Mac® computers with the M1 processor at this time, contact your computer manufacturer to verify if your computer supports the display driver. The device you connected to has new features for USB-C that the cable doesn’t support. The device or dongle isn't connected to the correct USB-C port on your PC (or phone). The device or dongle is using an external hub or dock to connect to your PC (or phone). Too many other Alternate Mode devices or dongles are connected to your PC (or phone).
-->Common points of discussion for OEMs who want to build Windows systems with USB Type-C connectors.
The connector can support USB devices that are low-speed, full-speed, high-speed, SuperSpeed (including SS+).
The connector can support alternate modes. The alternate mode feature allows non-USB protocols to run over the USB cable, while simultaneously preserving USB 2.0 and charging functionality. Currently, the most popular alternate modes are DisplayPort/DockPort and MHL.
This alternate mode allows the user to project audio/video to external DisplayPort displays over a USB connector.
The MHL alternate mode is allows the user to project video/audio to external displays that support MHL.
If a user connects a USB Type-C alternate mode device or adapter that is not supported by the attached PC or phone, the device or adapter can expose a Billboard device that contains information about the error condition to help the user troubleshoot issues.
A system with USB Type-C connectors has higher power limits, it can support up to 5V, 3A, 15W.
In addition, the connector can optionally support the power delivery feature as defined by the USB Power Delivery OEM . If the connector supports power delivery, a USB Type-C system can be a power source provider or a consumer and support up to 100W.
Peripheral devices can connect to a mobile system with USB Type-C connectors, changing the traditional role of a mobile system from function to host. When the same system is connected to a PC, the system resumes the role of a function and PC becomes the host.
No. The operating system (or any Microsoft-provided software component) plays no part in selecting an alternate mode. The decision is made by the driver for the connector, specifically the USB connector manager (UCM) client driver. The driver does so by communicating with the connector's firmware by using hardware interfaces.
Enabling pre-OS charging is owned by the OEM. You can choose to not implement USB Power Delivery, and charge at USB Type-C power levels until you boot into the operating system.
Here are a few things to consider:
You must to implement USB Power Delivery, so that power and data roles can be swapped independently.
Your dock’s upstream port should be implemented as a Charging UFP, defined in the USB Type-C specification. For details, see section 4.8.4, version 1.1.
Your dock should request a DR_Swap if it resolved to a DFP, or a PR_Swap if it resolved to a UFP.
The initial DFP is the power source, so you must change the data role. The initial UFP is the power sink, so you must change the power role. You can perform those operations in your implementation of these callback functions:
Yes, if you connect the phone to a device that supports a USB Billboard, as per the USB Device Class Definition for Billboard Devices specification, the user is notified. Your USB connector manager (UCM) client driver is not required to handle the notification. If your system does not recognize the alternate mode, do not enter the mode.
USB Type-C is not supported on versions of Windows prior to Windows 10.
UCSI is not supported on versions of Windows prior to Windows 10.
To test your implementation, follow the guidelines given in USB Type-C manual interoperability test procedures. We recommend running USB tests in Windows Hardware Lab Kit (HLK) for Windows 10. These tests are listed in Windows Hardware Certification Kit Tests for USB.
Windows 10 can show a set of USB Type-C error messages to help educate users about the limitations with different combinations of USB Type-C hardware and software. For example, the user might get 'Device is charging slowly' message if the charger connected to the USB Type-C connector is not powerful enough, not compatible with the system, or is connected to a non-charging port. For more information, see Troubleshoot messages for a USB Type-C Windows system.
The non-PD port attempts to charge the system by using USB Type-C current levels. For more information, see USB 3.1 and USB Type-C specifications.
The alternate mode feature allows non-USB protocols (such as Thunderbolt, SuperMHL) to run over the USB cable, while simultaneously preserving USB 2.0 and charging functionality. If a user connects a USB Type-C alternate mode device or adapter that is not supported by the attached PC or phone running Windows 10, an error condition is detected and a message is shown to the user.
For the best results, make sure that the alternate mode device or adapter’s requirements are met by PC or phone or cable.
Windows 10 for desktop editions supports MTP in the initiator role; Windows 10 Mobile supports MTP in the responder role.
UCM is its own device stack (see Architecture: USB Type-C design for a Windows system). Windows 10 support for USB Type-C includes the required plumbing to make sure that the different class drivers know how to communicate with the different USB Type-C connectors. In order to get Windows 10 support for USB Type-C, you must plug into the UCM device stack.
The Windows HLK for Windows 10 contains tests for USB host and function controllers. To test your system, use a USB C-A adapter. These tests are listed in Windows Hardware Certification Kit Tests for USB.
This is not a valid connection.
If the user attempts to make such a connection, Windows shows an error message. For more information, see Error messages for a USB Type-C Windows system.
The only valid connection is between a Windows Mobile device and Windows desktop device.
On software-assisted charging platforms, UcmCx communicates with PMIC and the battery subsystem. The client driver may determine the charging levels by communicating with the hardware through hardware interfaces. On hardware-assisted platforms, the embedded controller is responsible for charging. UcmCx takes no part in the process.
In Windows HLK for Windows 10, there are no USB Type-C specific tests. We recommend running USB tests in Windows HLK for Windows 10. These tests are listed in Windows Hardware Certification Kit Tests for USB.
USB Type-C Connector System Software Interface (UCSI) Specification describes the capabilities of the USB Type-C Connector System software Interface (UCSI), and explains the registers and data structures, for hardware component designers, system builders, and device driver developers.
Microsoft provides an in-box driver with Windows, UcmUcsi.sys, that implements the features defined by the specification. This driver is intended for systems with embedded controllers.
We recommend running USB tests in Windows HLK for Windows 10. These tests are listed in Windows Hardware Certification Kit Tests for USB.
We recommend running USB tests in Windows HLK for Windows 10. These tests are listed in Windows Hardware Certification Kit Tests for USB.
The UCM class extension might get requests from the operating system to change data or power direction of the connector. When it gets those requests, it invokes client driver's implementation of EVT_UCM_CONNECTOR_SET_DATA_ROLE and EVT_UCM_CONNECTOR_SET_POWER_ROLE callback functions (if the connector implements PD). In the implementation, the client driver is expected control the VBUS and VCONN pins. For more information about those callback functions, see Write a USB Type-C connector driver.